Influence of relative humidity and temperature on the production of pinonaldehyde and OH radicals from the ozonolysis of α-pinene
نویسندگان
چکیده
The ozonolysis of α-pinene has been investigated under dry and humid conditions in the temperature range of 243–303 K. The results provided new insight into the role of water and temperature in the degradation mechanism of α-pinene and in the formation of secondary organic aerosols (SOA). The SOA yields were higher at humid conditions than at dry conditions. The water induced gain was largest for the lowest temperatures investigated (243 and 253 K). The increase in the SOA yields was dominated by water (and temperature) effects on the organic product distribution, whilst physical uptake of water was negligible. This will be demonstrated for the example of pinonaldehyde (PA) which was formed as a major product in the humid experiments with total molar yields of 0.30±0.06 at 303 K and 0.15±0.03 at 243 K. In the dry experiments the molar yields of PA were only 0.07±0.02 at 303 K and 0.02±0.02 at 253 K. The observed partitioning of PA as a function of the SOA mass present at 303 K limited the effective vapour pressure of pure PA p0 PA to the range of 0.01– 0.001 Pa, 3–4 orders of magnitude lower than literature values. The corresponding mass partitioning coefficient was determined to KPA=0.005±0.004 m3 μg−1 and the total mass yield αPAtotal=0.37±0.08. At 303 K PA preferably stayed in the gas-phase, whereas at 253 K and 243 K it exclusively partitioned into the particulate phase. PA could thus account at Correspondence to: Th. F. Mentel ([email protected]) least for half of the water induced gain in SOA mass at 253 K. The corresponding effect was negligible at 303 K because the PA preferably remained in the gas-phase. The yield of OH radicals, which were produced in the ozonolysis, was indirectly determined by means of the yield of cyclohexanone formed in the reaction of OH radicals with cyclohexane. OH yields of the α-pinene ozonolysis were determined to 0.67±0.17 for humid and 0.54±0.13 for dry conditions at 303 K, indicating a water dependent path of OH radical formation. For 253 and 243 K OH yields could be estimated to 0.5 with no significant difference between the dry and humid experiments. This is the first clear indication for OH radical formation by α-pinene ozonolysis at such low temperatures.
منابع مشابه
α-pinene photooxidation under controlled chemical conditions – Part 1: Gas-phase composition in low- and high-NOx environments
The OH oxidation of α-pinene under both lowand high-NOx environments was studied in the Caltech atmospheric chambers. Ozone was kept low to ensure OH was the oxidant. The initial α-pinene concentration was 20–50 ppb to ensure that the dominant peroxy radical pathway under low-NOx conditions is reaction with HO2, produced from reaction of OH with H2O2, and under high-NOx conditions, reactions wi...
متن کاملDimers in α-pinene secondary organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity
The formation of secondary organic aerosol (SOA) from both ozonolysis and hydroxyl radical (OH)-initiated oxidation of α-pinene under conditions of high nitric oxide (NO) concentrations with varying relative humidity (RH) and aerosol acidity was investigated in the University of North Carolina dual outdoor smog chamber facility. SOA formation from ozonolysis of α-pinene was enhanced relative to...
متن کاملReal refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, α-pinene and toluene
Thermodenuding particles can provide insights into aerosol composition and may be a way to create particles in laboratory chambers that better mimic the atmosphere. The relative volatility of secondary organic aerosol (SOA) was investigated by evaporating organics from the particles using a thermodenuder (TD) at temperatures between ∼ 60 and 100 C. Volatility was influenced by the parent hydroc...
متن کاملNew particle formation during - and -pinene oxidation
New particle formation during α-and β-pinene oxidation Abstract Introduction Conclusions References Tables Figures Back Close Atmospheric Chemistry and Physics Discussions New particle formation during α-and β-pinene oxidation by O 3 , OH and NO 3 , and the influence of water vapour: particle size distribution studies Abstract Introduction Conclusions References Tables Figures Back Close Abstra...
متن کاملSecondary Organic Material Produced by the Dark Ozonolysis of α-Pinene Minimally Affects the Deliquescence and Efflorescence of Ammonium Sulfate
The hygroscopic phase transitions and growth factors of mixed particles having as components ammonium sulfate and secondary organic material (SOM) were measured. The SOM was generated by the dark ozonolysis of α-pinene, and organic particle mass concentrations of 1.63 and 12.2 μg m−3 were studied. The hygroscopic properties were investigated using a 1×3 tandem differential mobility analyzer (1×...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010